Cart (Loading....) | Create Account
Close category search window
 

Multiple Graph Alignment for the Structural Analysis of Protein Active Sites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Graphs are frequently used to describe the geometry and also the physicochemical composition of protein active sites. Here, the concept of graph alignment as a novel method for the structural analysis of protein binding pockets is presented. Using inexact graph-matching techniques, one is able to identify both conserved areas and regions of difference among different binding pockets. Thus, using multiple graph alignments, it is possible to characterize functional protein families and to examine differences among related protein families independent of sequence or fold homology. Optimized algorithms are described for the efficient calculation of multiple graph alignments for the analysis of physicochemical descriptors representing protein binding pockets. Additionally, it is shown how the calculated graph alignments can be analyzed to identify structural features that are characteristic for a given protein family and also features that are discriminative among related families. The methods are applied to a substantial high-quality subset of the PDB database and their ability to successfully characterize and classify 10 highly populated functional protein families is shown. Additionally, two related protein families from the group of serine proteases are examined and important structural differences are detected automatically and efficiently.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:4 ,  Issue: 2 )

Date of Publication:

April-June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.