Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Stochastic Sparse-grid Collocation Algorithm (SSCA) for Periodic Steady-State Analysis of Nonlinear System with Process Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jun Tao ; Dept.of Microelectron., Fudan Univ., Shanghai ; Xuan Zeng ; Wei Cai ; Yangfeng Su
more authors

In this paper, stochastic collocation algorithm combined with sparse grid technique (SSCA) is proposed to deal with the periodic steady-state analysis for nonlinear systems with process variations. Compared to the existing approaches, SSCA has several considerable merits. Firstly, compared with the moment-matching parameterized model order reduction (PMOR), which equally treats the circuit response on process variables and frequency parameter by Taylor approximation, SSCA employs homogeneous chaos to capture the impact of process variations with exponential convergence rate and adopts Fourier series or wavelet bases to model the steady-state behavior in time domain. Secondly, contrary to stochastic Galerkin algorithm (SGA), which is efficient for stochastic linear system analysis, the complexity of SSCA is much smaller than that of SGA for nonlinear case. Thirdly, different from efficient collocation method, the heuristic approach which may results in "rank deficient problem" and "Runge phenomenon", sparse grid technique is developed to select the collocation points in SSCA in order to reduce the complexity while guaranteing the approximation accuracy. Furthermore, though SSCA is proposed for the stochastic nonlinear steady-state analysis, it can be applied for any other kinds of nonlinear system simulation with process variations, such as transient analysis, etc.

Published in:

Design Automation Conference, 2007. ASP-DAC '07. Asia and South Pacific

Date of Conference:

23-26 Jan. 2007