Cart (Loading....) | Create Account
Close category search window
 

Coupling-aware Dummy Metal Insertion for Lithography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang Deng ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana-Champaign, IL ; Wong, M.D.F. ; Kai-Yuan Chao ; Hua Xiang

As integrated circuits manufacturing technology is advancing into 65nm and 45nm nodes, extensive resolution enhancement techniques (RETs) are needed to correctly manufacture a chip design. The widely used RET called off-axis illumination (OAI) introduces forbidden pitches which lead to very complex design rules. It has been observed that imposing uniformity on layout designs can substantially improve printability under OAI. For metal layers, uniformity can be achieved simply by inserting dummy metal wire segments at all free spaces. Simulation results indeed show significant improvement in printability with such a dummy metal insertion approach. To minimize mask cost, it is advantageous to use dummy metal segments that are of the same size as regular metal wires due to their simple geometry. But these dummy wires are printable and hence increase coupling capacitances and potentially affect yield. The alternative is to use a set of parallel sub-resolution thin wires (which is not printed) to replace a printable dummy wire segment. These invisible dummy metal segments do not increase coupling capacitances but bring a higher lithography cost, which includes mask cost and RET/process expense. This paper presents a strategy for dummy metal insertion that can optimally trade off lithography cost and coupling capacitance. In particular, we present an optimal algorithm that can minimize lithography cost subject to any given coupling capacitance bound. Moreover, this dummy metal insertion achieves a highly uniform density because of the locality of coupling capacitance, which automatically ameliorates chemical mechanical polish (CMP) problem.

Published in:

Design Automation Conference, 2007. ASP-DAC '07. Asia and South Pacific

Date of Conference:

23-26 Jan. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.