By Topic

A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pfeiffer, U.R. ; IBM T. J. Watson Res. Center, Yorktown Heights, NY ; Goren, D.

In this paper, a distributed active transformer for the operation in the millimeter-wave frequency range is presented. The transformer utilizes stacked coupled wires as opposed to slab inductors to achieve a high coupling factor of kf=0.8 at 60 GHz. Scalable and compact equivalent-circuit models are used for the transformer design without the need for full-wave electromagnetic simulations. To demonstrate the feasibility of the millimeter-wave transformer, a 200-mW (23 dBm) 60-GHz power amplifier has been implemented in a standard 130-nm SiGe process technology, which, to date, is the highest reported output power in an SiGe process technology at millimeter-wave frequencies. The size of the output transformer is only 160times160 mum2 and demonstrates the feasibility of efficient power combining and impedance transformation at millimeter-wave frequencies. The two-stage amplifier has 13 dB of compressed gain and achieves a power-added efficiency of 6.4% while combining the power of eight cascode amplifiers into a differential 100-Omega load. The amplifier supply voltage is 4 V with a quiescent current consumption of 300 mA

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 5 )