Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

A 3-D Spectral-Element Time-Domain Method for Electromagnetic Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Joon-Ho Lee ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC ; Qing Huo Liu

A spectral-element time-domain (SETD) method is proposed to solve 3-D transient electromagnetic problems based on Gauss-Lobatto-Legendre polynomials. It has the advantages of spectral accuracy and block-diagonal mass matrix. With the inexpensive inversion of the block-diagonal mass matrix, the proposed method requires only a trivial sparse matrix-vector product at each time step, thus significantly reducing CPU time and memory requirement. Galerkin's method is used for spatial discretization, and a fourth-order Runge-Kutta scheme is employed for the time integration. The perfectly matched layer (PML) is employed to truncate the boundary in unbounded problems. The pseudospectral time-domain method is used to simplify the treatment of the PML inside the proposed SETD method. Numerical examples are shown to verify the efficiency and the spectral accuracy with the order of basis functions

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 5 )