By Topic

A Direct Synthesis Approach for Microwave Filters With a Complex Load and Its Application to Direct Diplexer Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ke-Li Wu ; Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Shatin ; Wei Meng

This paper presents a direct synthesis approach for general Chebyshev filters terminated with a complex load. The new approach is based on the fact that the polynomial functions for synthesizing the filters are composed for any matched loads. By normalizing the polynomial functions with assumed complex matched load impedance by a real reference load impedance using power waves normalization, a set of new polynomial functions for the same filter, but with real load impedance, can be formulated, from which the coupling matrix for the physical filter design can be obtained using a standard direct filter synthesis approach. This new direct synthesis approach can find many applications. A practical application is the direct diplexer design with a realistic junction model being taken into account. With the diplexer design is concerned, a fast-converged iterative scheme is proposed. The effectiveness and the validation of the proposed scheme are demonstrated by two design examples

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:55 ,  Issue: 5 )