By Topic

Circuit Theoretic Classification of Parallel Connected DC–DC Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuehui Huang ; Dept. of Electron. & Inf. Eng., Hong Kong Polytech. Univ. ; Tse, C.K.

This paper describes a classification of paralleling schemes for dc-dc converters from a circuit theoretic viewpoint. The purpose is to provide a systematic classification of the types of parallel converters that can clearly identify all possible structures and control configurations, allowing simple and direct comparison of the characteristics and limitations of different paralleling schemes. In the proposed classification, converters are modeled as current sources or voltage sources, and their connection possibilities, as constrained by Kirchhoff's laws, are categorized systematically into three basic types. Moreover, control arrangements are classified according to the presence of current sharing and voltage-regulation loops. Computer simulations are presented to illustrate the characteristics of the various paralleling schemes

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:54 ,  Issue: 5 )