By Topic

Particle PHD filter multiple target tracking in sonar image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Clark, D. ; Dept. of Telecommun. Eng., Myongji Univ., Yongin ; Ruiz, I.T. ; Petillot, Y. ; Bell, J.

Two contrasting approaches for tracking multiple targets in multi-beam forward-looking sonar images are considered. The first approach is based on assigning a Kalman filter to each target and managing the measurements with gating and a measurement-to-track data association technique. The second approach uses the recently developed particle implementation of the multiple-target probability hypothesis density (PHD) filter and a target state estimate-to-track data association technique. The two approaches are implemented and compared on both simulated sonar and real forward-looking sonar data obtained from an autonomous underwater vehicle (AUV) and demonstrate that the PHD filter with data association compares well with traditional approaches for multiple target tracking

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:43 ,  Issue: 1 )