By Topic

EXPONENTIAL TENSORS: A FRAMEWORK FOR EFFICIENT HIGHER-ORDER DT-MRI COMPUTATIONS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Angelos Barmpoutis ; Florida Univ., Gainesville, FL ; Baba C. Vemuri

In diffusion tensor magnetic resonance image (DT-MRI) processing a 2nd order tensor has been commonly used to approximate the diffusivity function at each lattice point of the 3D volume image. These tensors are symmetric positive definite matrices and the appropriate constraints required in algorithms for processing them makes these algorithms complex and significantly increases their computational complexity. In this paper we present a novel parameterization of the diffusivity function using which the positive definite property of the function is guaranteed without any increase in computation. This parameterization can be used for any order tensor approximations; we present Cartesian tensor approximations of order 2, 4, 6 and 8 respectively, of the diffusivity function all of which retain the positivity property in this parameterization without the need for any explicit enforcement. Furthermore, we present an efficient framework for computing distances and geodesies in the space of the coefficients of our proposed diffusivity function. Distances & geodesies are useful for performing interpolation, computation of statistics etc. on high rank positive definite tensors. We validate our model using simulated and real diffusion weighted MR data from excised, perfusion-fixed rat optic chiasm.

Published in:

2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro

Date of Conference:

12-15 April 2007