By Topic

A MODEL TO INVESTIGATE THE FEASIBILITY OF FDG AS A SURROGATE MARKER OF HYPOXIA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kelly, C.J. ; Wolfson Med. Vision Lab., Oxford Univ. ; Smallbone, K. ; Roose, T. ; Brady, S.M.

Fmiso-PET is a non-invasive modality used for the assessment of tumour hypoxia, and increasingly for planning radiotherapy. However, the availability and contrast properties of Fmiso are not ideal. Recent efforts to compare FDG binding with that of Fmiso, in order to ascertain FDG's potential as a marker of hypoxia, have met with mixed results. The potential reasons for correlated and disparate binding patterns between the two tracers have been postulated, but not formally outlined as yet. We present a model of a key component of the image formation process - tracer pharmacokinetics. This involves a series of coupled PDEs, describing the interplay between concentrations of oxygen, glucose, HIF, Fmiso and FDG. We use this model to assess the general feasibility of FDG as a surrogate marker of hypoxia and find that its utility is dependent on activity of oncogenic pathways

Published in:

Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on

Date of Conference:

12-15 April 2007