By Topic

Constraining Transition Propagation for Low-Power Scan Testing Using a Two-Stage Scan Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dong Xiang ; Sch. of Software, Tsinghua Univ., Beijing ; Kaiwei Li ; Fujiwara, H. ; Thulasiraman, K.
more authors

A two-stage scan architecture is proposed to constrain transition propagation within a small part of scan flip-flops. Most scan flip-flops are deactivated during test application. The first stage includes multiple scan chains, where each scan chain is driven by a primary input. Each scan flip-flop in the multiple scan chains drives a group of scan flip-flops in the second stage. Scan flip-flops in different stages use separate clock signals. Test signals assigned to scan flip-flops in the multiple scan chains are applied to the scan flip-flops of the second stage in one clock cycle after the test vector has been applied to the multiple scan chains. There exists no transition at the scan flip-flops in the second stage when a test vector is applied to the multiple scan chains

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:54 ,  Issue: 5 )