By Topic

A Convex Approach to Validation-Based Learning of the Regularization Constant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pelckmans, K. ; Katholieke Univ., Leuven ; Suykens, J.A.K. ; De Moor, B.

This letter investigates a tight convex relaxation to the problem of tuning the regularization constant with respect to a validation based criterion. A number of algorithms is covered including ridge regression, regularization networks, smoothing splines, and least squares support vector machines (LS-SVMs) for regression. This convex approach allows the application of reliable and efficient tools, thereby improving computational cost and automatization of the learning method. It is shown that all solutions of the relaxation allow an interpretation in terms of a solution to a weighted LS-SVM

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 3 )