By Topic

A Hybrid Neurogenetic Approach for Stock Forecasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yung-Keun Kwon ; Sch. of Comput. Sci. & Eng., Seoul Nat. Univ. ; Byung-Ro Moon

In this paper, we propose a hybrid neurogenetic system for stock trading. A recurrent neural network (NN) having one hidden layer is used for the prediction model. The input features are generated from a number of technical indicators being used by financial experts. The genetic algorithm (GA) optimizes the NN's weights under a 2-D encoding and crossover. We devised a context-based ensemble method of NNs which dynamically changes on the basis of the test day's context. To reduce the time in processing mass data, we parallelized the GA on a Linux cluster system using message passing interface. We tested the proposed method with 36 companies in NYSE and NASDAQ for 13 years from 1992 to 2004. The neurogenetic hybrid showed notable improvement on the average over the buy-and-hold strategy and the context-based ensemble further improved the results. We also observed that some companies were more predictable than others, which implies that the proposed neurogenetic hybrid can be used for financial portfolio construction

Published in:

IEEE Transactions on Neural Networks  (Volume:18 ,  Issue: 3 )