By Topic

Random Forests, Nearest Shrunken Centroids and Support Vector Machines for the Classification of Diverse E-Nose Datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pardo, M. ; CNR-INFM & Univ. of Brescia, Brescia ; Sberveglieri, Giorgio

Sensors practitioners don't make full use of the power of state-of-the-art pattern recognition (PR) algorithms and software. In this paper we apply -to our knowledge for the first time-Random Forests (RF) and Nearest Shrunken Centroids (NSC) to the classification of three E-Nose datasets of different hardness. We compare the classification rate with the one obtained by SVM. The classifiers parameters are optimized in an inner cross-validation (CV) cycle and the error is calculated by outer CV in order to avoid any bias. RF and SVM have a similar classification performance (SVM has an edge on the most difficult dataset). On the other hand, RF and NSC have an in-built feature selection mechanism that is very helpful for understanding the structure of the dataset and evaluating sensors.

Published in:

Sensors, 2006. 5th IEEE Conference on

Date of Conference:

22-25 Oct. 2006