By Topic

Gas-Sensor Interface Circuit Based on Calibration Free Novel Frequency Measurement Approach with 16-Bit Digital Output

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

In this paper we present a low-cost CMOS wide-dynamic-range integrated interface circuit for indoor resistive gas sensors based on an enhanced oscillator approach. The state of the art of this measurement method has been improved biasing the sensor with a constant voltage, thus increasing linearity by separating the oscillator circuit from the sensing device. Another important novelty of this circuit is an embedded digital measurement control system that extracts the sensor resistance value by the ratio of a reference counter and a resistance dependent one, actually doubling the measurement range in terms of decades. Test results on a silicon prototype show that the proposed circuit achieves, without calibration, a precision of about 0.4% over a range of 4 decades and better than 0.8% over 5 decades (dynamic range: DR>140dB). After calibration, it reaches a precision of 0.8% over a range of 6 decades (DR>165dB). The circuit may also work over a reduced range of 2-3 decades with a throughput up to 100Hz and a precision of 0.2%. Chemical measurements demonstrate the real effectiveness of this system.

Published in:

Sensors, 2006. 5th IEEE Conference on

Date of Conference:

22-25 Oct. 2006