By Topic

A Precomputed Approach for Real-Time Haptic Interaction with Fluids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

The key to enhancing perception of the virtual world is improving mechanisms for interacting with that world. Through providing a sense of touch, haptic rendering is one such mechanism. Many methods efficiently display force between rigid objects, but to achieve a truly realistic virtual environment, haptic interaction with fluids is also essential. In the field of computational fluid dynamics, researchers have developed methods to numerically estimate the resistance due to fluids by solving complex partial differential equations, called the Navier-Stokes equations. However, their estimation techniques, although numerically accurate, are prohibitively time-consuming. This becomes a serious problem for haptic rendering, which requires a high frame rate. To address this issue, we developed a method for rapidly estimating and displaying forces acting on a rigid virtual object due to water. In this article, we provide an overview of our method together with its implementation and two applications: a lure-fishing simulator and a virtual canoe simulator

Published in:

Computer Graphics and Applications, IEEE  (Volume:27 ,  Issue: 3 )