Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Orthonormal basis selection for LPV system identification, the Fuzzy-Kolmogorov c-Max approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Toth, R. ; Delft Center for Syst. & Control, Delft Univ. of Technol. ; Heuberger, P.S.C. ; Van den Hof, P.M.J.

A fuzzy clustering approach is developed to select pole locations for orthonormal basis functions (OBFs), used for identification of linear parameter varying (LPV) systems. The identification approach is based on interpolation of locally identified linear time invariant (LTI) models, using globally fixed OBFs. Selection of the optimal OBF structure, that guarantees the least worst-case local modelling error in an asymptotic sense, is accomplished through the fusion of the Kolmogorov n-width (KnW) theory and fuzzy c-means (FcM) clustering of observed sample system poles

Published in:

Decision and Control, 2006 45th IEEE Conference on

Date of Conference:

13-15 Dec. 2006