By Topic

Passivity-Based Designs for Synchronized Path Following

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ihle, I.-A.F. ; Centre for Ships & Ocean Struct., Norwegian Univ. of Sci. & Technol., Trondheim ; Arcak, M. ; Fossen, T.I.

We consider a formation control system where individual systems are controlled by a path-following design and the path variables are to be synchronized. We first show a passivity property for the path following system and, next, combine this with a passivity-based synchronization algorithm developed in Arcak, M. (2006), The passivity approach expands the classes of synchronization schemes available to the designer. This generality offers the possibility to optimize controllers to, e.g., improve robustness and performance. Two designs are developed in the proposed passivity framework: The first employs the path error information in the synchronization loop, while the second only uses synchronization errors. A sampled-data design, where the path variables are updated in discrete-time and the path following controllers are updated in continuous time, is also developed

Published in:

Decision and Control, 2006 45th IEEE Conference on

Date of Conference:

13-15 Dec. 2006