By Topic

Short-term hydro-thermal dispatch detailed model and solutions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Luo, G.X. ; Dept. of Electr. Eng., Toronto Univ., Ont., Canada ; Habibollahzadeh, H. ; Semlyen, A.

An efficient method is described for the solution of the short-term hydro-thermal dispatch problem including optimal power flow (OPF) as the mathematical model of the thermal subsystem. This approach has the capability of taking into account the following effects: coupling of cascaded multichannel reservoirs, water time delays, reservoir head variations, load flow, and other constraints due to security and environmental considerations. The problem is decomposed into hydro and thermal subproblems which are then solved iteratively. An effective adjustment has been proposed to take into account the nonlinear relation between the two subproblems to speed up the convergence of the iterative process. In this adjustment, as well as in solving the thermal subproblem, equations of coordination and OPF are combined for better computational efficiency. On the basis of the proposed approach, four different methods, which differ in the degree of details in modeling the thermal system, have been tested and investigated. Numerical examples are included to demonstrate the advantages of the approach

Published in:

Power Systems, IEEE Transactions on  (Volume:4 ,  Issue: 4 )