Cart (Loading....) | Create Account
Close category search window
 

Transient stability hierarchical control in multimachine power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rubaai, A. ; Dept. of Electr. Eng., Cleveland State Univ., OH, USA ; Villaseca, F.Eugenio

The authors present the optimal transient stability control problem in a hierarchical structure for multimachine power systems. The two-level structure retains the local closed-loop controls, thereby easing its implementation on existing systems. The formulation accounts for nonlinearities and interconnections, and the optimization of the system transient performance is obtained with less computational effort. Since the computations are distributed among the many local feedback subsystems, the storage and solution times are considerably less than those required by a single overall centralized controller. This advantage becomes much stronger as the system size increases. For illustration purposes, this technique was applied successfully to a four-machine system

Published in:

Power Systems, IEEE Transactions on  (Volume:4 ,  Issue: 4 )

Date of Publication:

Nov 1989

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.