Cart (Loading....) | Create Account
Close category search window
 

A pso-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: theory, simulation and measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper provides a combination of chemotaxic and anemotaxic modeling, known as odor-gated rheotaxis (OGR), to solve real-world odor source localization problems. Throughout the history of trying to mathematically localize an odor source, two common biometric approaches have been used. The first approach, chemotaxis, describes how particles flow according to local concentration gradients within an odor plume. Chemotaxis is the basis for many algorithms, such as particle swarm optimization (PSO). The second approach is anemotaxis, which measures the direction and velocity of a fluid flow, thus navigating "upstream" within a plume to localize its source. Although both chemotaxic and anemotaxic based algorithms are capable of solving overly-simplified odor localization problems, such as dynamic-bit-matching or moving-parabola problems, neither method by itself is adequate to accurately address real life scenarios. In the real world, odor distribution is multi-peaked due to obstacles in the environment. However, by combining the two approaches within a modified PSO-based algorithm, odors within an obstacle-filled environment can be localized and dynamic advection-diffusion problems can be solved. Thus, robots containing this modified particle swarm optimization algorithm (MPSO) can accurately trace an odor to its source

Published in:

Computational Intelligence Magazine, IEEE  (Volume:2 ,  Issue: 2 )

Date of Publication:

May 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.