By Topic

Application notes - Algorithms for Assessing the Quality of Facial Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abdel-Mottaleb, M. ; Miami Univ., FL ; Mahoor, M.H.

In this paper, we presented algorithms to assess the quality of facial images affected by factors such as blurriness, lighting conditions, head pose variations, and facial expressions. We developed face recognition prediction functions for images affected by blurriness, lighting conditions, and head pose variations based upon the eigenface technique. We also developed a classifier for images affected by facial expressions to assess their quality for recognition by the eigenface technique. Our experiments using different facial image databases showed that our algorithms are capable of assessing the quality of facial images. These algorithms could be used in a module for facial image quality assessment in a face recognition system. In the future, we will integrate the different measures of image quality to produce a single measure that indicates the overall quality of a face image

Published in:

Computational Intelligence Magazine, IEEE  (Volume:2 ,  Issue: 2 )