By Topic

Ant Colony Optimizations for Resource- and Timing-Constrained Operation Scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gang Wang ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA ; Wenrui Gong ; DeRenzi, B. ; Kastner, R.

Operation scheduling (OS) is a fundamental problem in mapping an application to a computational device. It takes a behavioral application specification and produces a schedule to minimize either the completion time or the computing resources required to meet a given deadline. The OS problem is NP-hard; thus, effective heuristic methods are necessary to provide qualitative solutions. We present novel OS algorithms using the ant colony optimization approach for both timing-constrained scheduling (TCS) and resource-constrained scheduling (RCS) problems. The algorithms use a unique hybrid approach by combining the MAX-MIN ant system metaheuristic with traditional scheduling heuristics. We compiled a comprehensive testing benchmark set from real-world applications in order to verify the effectiveness and efficiency of our proposed algorithms. For TCS, our algorithm achieves better results compared with force-directed scheduling on almost all the testing cases with a maximum 19.5% reduction of the number of resources. For RCS, our algorithm outperforms a number of different list-scheduling heuristics with better stability and generates better results with up to 14.7% improvement. Our algorithms outperform the simulated annealing method for both scheduling problems in terms of quality, computing time, and stability

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:26 ,  Issue: 6 )