By Topic

Connection Availability Analysis of Shared Backup Path-Protected Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ling Zhou ; Electron./Metrol. Lab. & Reliability Center, Swiss Fed. Labs. for Mater. Testing & Res., Duebendorf ; Held, M. ; Sennhauser, U.

Dual-span failures dominate the system unavailability in a mesh-restorable network with full restorability to single-span failures. Traditional availability analysis based on reliability block diagrams is not suitable for survivable networks with shared spare capacity. Therefore, a new concept is proposed to facilitate the calculations of connection availability. A U.S. network consisting of 19 nodes and 28 spans yielding 171 bidirectional connections is investigated. We find that networks with shared backup path protection can have average connection unavailabilities of the same order of magnitude as those with dedicated automatic protection switching, however, with a much better capacity efficiency. The proposed method can exactly calculate the unavailability of a specific connection with known restoration details or the average connection performance without any restoration details by presuming the dual-span failures to be the only failure mode and an arbitrary allocation rule of spare capacity

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 5 )