By Topic

Design of Wideband Single-Polarization Single-Mode Photonic Crystal Fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fangdi Zhang ; Beijing Univ. of Posts & Telecommun. ; Min Zhang ; Xiaoyi Liu ; Peida Ye

The present paper proposes a novel design for achieving single-polarization single-mode (SPSM) operation in photonic crystal fiber (PCF), using a rectangular-lattice PCF with two lines of three central air holes enlarged. The proposed PCF that is composed entirely of silica material is modeled by a full-vector finite element method with anisotropic perfectly matched layers. The position of the region of single polarization can be tuned freely by adjusting the size of the central enlarged air holes. Using this structure, an SPSM PCF with confinement loss less than 0.1 dB/km within the wavelength range from 1.20 to 1.66 mum and effective mode area about 5.9 mum2 at 1.55 mum has been successfully designed. The proposed fiber is a nonlinear SPSM, which may be useful for nonlinear optical applications or applications with a wide SPSM operating bandwidth requirement

Published in:

Journal of Lightwave Technology  (Volume:25 ,  Issue: 5 )