By Topic

Design and Application of Compact and Highly Tolerant Polarization-Independent Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this paper, the design, fabrication, and application of a highly tolerant polarization-independent optical-waveguide structure suited for operation in the third communication window is presented. The waveguide structure has been optimized toward minimized sensitivity to technological tolerances and low fabrication complexity. The tolerance analysis has been based on the typical processing tolerances of the widely applied silicon-oxynitride technology, being plusmn3times10 -4 in refractive index, plusmn1% in thickness, and plusmn0.1 mum in channel width. The optimized waveguide design fulfills the criterion of a channel birefringence within 5times10-5, including processing tolerance. It also enables a fiber-to-chip coupling loss below 1 dB/facet and is suited for the realization of low-loss bends with a radius down to 600 mum. Based on this waveguide design, a passband-flattened optical wavelength filter with 50-GHz free spectral range has been realized and tested. The measured TE-TM shift of 0.03 nm confirms the polarization dependence of the optical waveguides being as low as 3times10-5

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 5 )