By Topic

Bagging Linear Sparse Bayesian Learning Models for Variable Selection in Cancer Diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chuan Lu ; Dept. of Comput. Sci., Univ. Coll. of Wales, Aberystwyth ; Andy Devos ; Johan A. K. Suykens ; Carles Arus
more authors

This paper investigates variable selection (VS) and classification for biomedical datasets with a small sample size and a very high input dimension. The sequential sparse Bayesian learning methods with linear bases are used as the basic VS algorithm. Selected variables are fed to the kernel-based probabilistic classifiers: Bayesian least squares support vector machines (BayLS-SVMs) and relevance vector machines (RVMs). We employ the bagging techniques for both VS and model building in order to improve the reliability of the selected variables and the predictive performance. This modeling strategy is applied to real-life medical classification problems, including two binary cancer diagnosis problems based on microarray data and a brain tumor multiclass classification problem using spectra acquired via magnetic resonance spectroscopy. The work is experimentally compared to other VS methods. It is shown that the use of bagging can improve the reliability and stability of both VS and model prediction

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:11 ,  Issue: 3 )