By Topic

Communication and TOA Estimation with Differential Impulse Radio UWB systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Differential Transmitted Reference (DTR) ultra-wideband (UWB) impulse radio (IR) system is one of the most attractive solutions for realizing non-coherent low data rate and low complexity UWB systems. Indeed, Transmitted Reference (TR) signaling, in combination with an Autocorrelation Receiver(AcR), allows a lower design complexity compared to coherent receivers. In this paper, the design of DTR-UWB radio modules for wireless sensor networks (WSN), capable of communication and localization, is addressed. Bit error rate (BER) performance of the DTR-UWB receivers conditioned on a channel realization is analyzed. The modelling of low complexity DTR-UWB systems using equivalent system models is presented. The average BER is verified through simulation for different signal-to-noise ratio (SNR) values, and is also compared to the average BER derived using the equivalent system model. We suggest a data-aided time of arrival (TOA) estimator for DTR-UWB systems, using least squares estimation technique and the equivalent system model.

Published in:

Positioning, Navigation and Communication, 2007. WPNC '07. 4th Workshop on

Date of Conference:

22-22 March 2007