By Topic

New Scheduling Strategies for Randomized Incremental Algorithms in the Context of Speculative Parallelization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this work, we address the problem of scheduling loops with dependences in the context of speculative parallelization. We show that the scheduling alternatives are highly influenced by the dependence violation pattern the code presents. We center our analysis in those algorithms where dependences are less likely to appear as the execution proceeds. Particularly, we focus on randomized incremental algorithms, widely used as a much more efficient solution to many problems than their deterministic counterparts. These important algorithms are, in general, hard to parallelize by hand and represent a challenge for any automatic parallelization scheme. Our analysis led us to the development of MESETA, a new scheduling strategy that takes into account the probability of a dependence violation to determine the number of iterations being scheduled. MESETA is compared with existing techniques, including fixed-size chunking (FSC), the only scheduling alternative used so far in the context of speculative parallelization. Our experimental results show a 5.5 percent to 36.25 percent speedup improvement over FSC, leading to a better extraction of the parallelism inherent to randomized incremental algorithms. Moreover, when the cost of dependence violations is too high to obtain speedups, MESETA curves the performance degradation

Published in:

IEEE Transactions on Computers  (Volume:56 ,  Issue: 6 )