Cart (Loading....) | Create Account
Close category search window
 

A Radix-10 Digit-Recurrence Division Unit: Algorithm and Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lang, T. ; Dept. of Electr. Eng. & Comput. Sci. Eng., California Univ., Irvine, CA ; Nannarelli, A.

In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm. The previous decimal division designs do not include recent developments in the theory and practice of this type of algorithm, which were developed for radix-2k dividers. In addition to the adaptation of these features, the radix-10 quotient digit is decomposed into a radix-2 digit and a radix-5 digit in such a way that only five and two times the divisor are required in the recurrence. Moreover, the most significant slice of the recurrence, which includes the selection function, is implemented in radix-2, avoiding the additional delay introduced by the radix-10 carry-save additions and allowing the balancing of the paths to reduce the cycle delay. The results of the implementation of the proposed radix-10 division unit show that its latency is close to that of radix-16 division units (comparable dynamic range of significant) and it has a shorter latency than a radix-10 unit based on the Newton-Raphson approximation

Published in:

Computers, IEEE Transactions on  (Volume:56 ,  Issue: 6 )

Date of Publication:

June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.