By Topic

Minimax Universal Decoding With an Erasure Option

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Neri Merhav ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa ; Meir Feder

Motivated by applications of rateless coding, decision feedback, and automatic repeat request (ARQ), we study the problem of universal decoding for unknown channels in the presence of an erasure option. Specifically, we harness the competitive minimax methodology developed in earlier studies, in order to derive a universal version of Forney's classical erasure/list decoder, which in the erasure case, optimally trades off between the probability of erasure and the probability of undetected error. The proposed universal erasure decoder guarantees universal achievability of a certain fraction xi of the optimum error exponents of these probabilities (in a sense to be made precise in the sequel). A single-letter expression for xi, which depends solely on the coding rate and the Neyman-Pearson threshold (to be defined), is provided. The example of the binary-symmetric channel is studied in full detail, and some conclusions are drawn

Published in:

IEEE Transactions on Information Theory  (Volume:53 ,  Issue: 5 )