By Topic

Sequential Prediction of Unbounded Stationary Time Series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gyorfi, L. ; Dept. of Comput. Sci. & Inf. Theor., Budapest Univ. of Technol. & Econ. ; Ottucsak, G.

A simple on-line procedure is considered for the prediction of a real-valued sequence. The algorithm is based on a combination of several simple predictors. If the sequence is a realization of an unbounded stationary and ergodic random process then the average of squared errors converges, almost surely, to that of the optimum, given by the Bayes predictor. An analog result is offered for the classification of binary processes

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 5 )