By Topic

Nimble and adaptive time-division multiple access control phase algorithm for cluster-based wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Ma ; Dept. of Electron. Syst. Eng., Univ. of Essex, Colchester ; K. Yang ; S. Ou

Control phase plays a critical role in the performance of time-division multiple access (TDMA)-based networks. Within cluster-based wireless sensor networks, a nimble and adaptive control phase algorithm called NACPA to control the control phase of TDMA-based medium access control (MAC) in cluster-based sensor networks is proposed. This algorithm takes advantage of the wireless sensor hardware feature and presents a more accurate although simpler means to calculate the number of contention nodes in one round. On the basis of the analysis of the features of contention probability against the number of contention nodes, this algorithm can significantly reduce its computation complexity, rendering it practically feasible for resource-constrained sensor networks. Detailed analytical evaluation against two typical MAC algorithms (polling and carrier sense multiple access) is presented both in terms of packet transmission delay and average channel utilisation, the results of which, while also matching the simulation observation, have shown its effectiveness and efficiency.

Published in:

IET Communications  (Volume:1 ,  Issue: 2 )