By Topic

Imaging the Distribution of Magnetic Nanoparticles With Ultrasound

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Norton, S.J. ; Fitzpatrick Inst. for Photonics, Duke Univ., Durham, NC ; Tuan Vo-Dinh

Magnetic nanoparticles can be caused to oscillate under the influence of an incident ultrasonic wave. If the particles are momentarily aligned with a magnetizing pulse creating a macroscopic magnetization, this oscillation will result in a time-varying magnetic moment which should be detectable as an induced voltage in a nearby pickup coil. In this way, focused ultrasound can be used to map, or image, the spatial distribution of the magnetic particles after these particles have been introduced into the body. The magnetic particles could be antibody-labeled to target tumor cells or used as a cardiovascular contrast agent, among other applications. The magnitude of the induced signal is estimated for one micron particles with a Fe/tissue volume fraction of 10-6, which is about the limit of detectability for MRI superparamagnetic contrast agents consisting of single domain iron-oxide particles. One advantage of this method compared to conventional MRI is potentially greater sensitivity due to the absence of a large background signal

Published in:

Medical Imaging, IEEE Transactions on  (Volume:26 ,  Issue: 5 )