By Topic

Optimal Electrical Distribution Systems Reinforcement Planning Using Gas Micro Turbines by Dynamic Ant Colony Search Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Distribution systems management is becoming an increasingly complicated issue due to the introduction of new energy trading strategies and new technologies. In this paper, an optimal reinforcement strategy to provide reliable and economic service to customers in a given time frame is investigated. In the new deregulated energy market and considering the incentives coming from the political and economical fields, it is reasonable to consider distributed generation (DG) as a viable option for systems reinforcement. In the paper, the DG technology is considered as a possible solution for distribution systems capacity problems, along several years. Therefore, compound solutions comprising the installation of both feeders and substations reinforcement and DG integration at different times are considered in the formulation of a minimum cost distribution systems reinforcement strategy problem. An application on a medium size network, hypothesizing a scenario of reinforcement also using as DG gas micro-turbines, is carried out using a novel optimization technique allowing the identification of optimal paths in trees or graphs. The proposed technique is the Dynamic Ant Colony Search algorithm

Published in:

Power Systems, IEEE Transactions on  (Volume:22 ,  Issue: 2 )