Cart (Loading....) | Create Account
Close category search window

Electric Distribution Network Expansion Under Load-Evolution Uncertainty Using an Immune System Inspired Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Carrano, E.G. ; Dept. of Electr. Eng., Univ. Fed. de Minas Gerais, Belo Horizonte ; Guimaraes, F.G. ; Takahashi, R.H.C. ; Neto, O.M.
more authors

This paper addresses the problem of electric distribution network expansion under condition of uncertainty in the evolution of node loads in a time horizon. An immune-based evolutionary optimization algorithm is developed here, in order to find not only the optimal network, but also a set of suboptimal ones, for a given most probable scenario. A Monte-Carlo simulation of the future load conditions is performed, evaluating each such solution within a set of other possible scenarios. A dominance analysis is then performed in order to compare the candidate solutions, considering the objectives of: smaller infeasibility rate, smaller nominal cost, smaller mean cost and smaller fault cost. The design outcome is a network that has a satisfactory behavior under the considered scenarios. Simulation results show that the proposed approach leads to resulting networks that can be rather different from the networks that would be found via a conventional design procedure: reaching more robust performances under load evolution uncertainties

Published in:

Power Systems, IEEE Transactions on  (Volume:22 ,  Issue: 2 )

Date of Publication:

May 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.