By Topic

An Overlapping Scan Architecture for Reducing Both Test Time and Test Power by Pipelining Fault Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoding Chen ; Dept. of Electr. & Comput. Eng., Virginia Polytech. Inst. & State Univ. ; Michael S. Hsiao

We present a novel scan architecture for simultaneously reducing test application time and test power (both average and peak power). Unlike previous works where the scan chain is partitioned only based on the excitation properties of the flip-flops (FFs), our work considers both the excitation and propagation properties of the scan FFs. In the proposed scan architecture, the scan chain is partitioned to maximize the overlapping between the excitation and propagation on different fault sets. The scan architecture also allows the entire set of detectable faults in the circuit under test (CUT) to be detected with only a portion of the scan elements active at a time, and thereby completely eliminates the need for the "serial full-scan" mode which is inefficient for both the test time and test power. Experimental results show that by introducing minimal hardware overhead, and without sacrificing fault coverage, an average peak power reduction of 22.8%, average power reduction of 41.6%, and an average reduction of 18.5% on the test application time can be achieved, compared with the ordinary full-scan architecture

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:15 ,  Issue: 4 )