Cart (Loading....) | Create Account
Close category search window

A Memory Efficient Partially Parallel Decoder Architecture for Quasi-Cyclic LDPC Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhongfeng Wang ; Sch. of Electr. Eng. & Comput. Sci., Oregon State Univ., Corvallis, OR ; Zhiqiang Cui

This paper presents a memory efficient partially parallel decoder architecture suited for high rate quasi-cyclic low-density parity-check (QC-LDPC) codes using (modified) min-sum algorithm for decoding. In general, over 30% of memory can be saved over conventional partially parallel decoder architectures. Efficient techniques have been developed to reduce the computation delay of the node processing units and to minimize hardware overhead for parallel processing. The proposed decoder architecture can linearly increase the decoding throughput with a small percentage of extra hardware. Consequently, it facilitates the applications of LDPC codes in area/power sensitive high-speed communication systems

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:15 ,  Issue: 4 )

Date of Publication:

April 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.