By Topic

On Concurrent Detection of Errors in Polynomial Basis Multiplication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bayat-Sarmadi, S. ; Dept. of Electr. & Comput. Eng., Waterloo Univ., Ont. ; Hasan, M.A.

The detection of errors in arithmetic operations is an important issue. This paper discusses the detection of multiple-bit errors due to faults in bit-serial and bit-parallel polynomial basis (PB) multipliers over binary extension fields. Our approach is based on multiple parity bits. Experimental results presented here show that due to an increase in the number of parity bits, the area overhead tends to increase linearly, but the probability of error detection approaches unity fairly quickly, e.g., for eight parity bits. In bit-serial implementation of a GF(2163) PB multiplier using eight parity bits, the area overhead and the probability of error detection are 10.29% and 0.996, respectively. This is achieved without any increase in the computation time of the GF(2163) PB multiplier

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:15 ,  Issue: 4 )