Cart (Loading....) | Create Account
Close category search window

Flatness-Based Vehicle Steering Control Strategy With SDRE Feedback Gains Tuned Via a Sensitivity Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper presents a feedback steering control strategy for a vehicle in an automatic driving context. Two main contributions in terms of control are highlighted. On the one hand, the automatic reference trajectories generation from geometric path constraints (obstacles). Thanks to the flatness property of the considered model, the longitudinal velocity will be controlled around a quasi-constant value while lateral and yaw dynamics targets will allow to avoid obstacles. On the other hand, a sensitivity-based methodology will be presented to choose the best possible gains parameterization in a state Riccati dependent equation (SDRE) feedback controller. Both direct and adjoint sensitivity methods are used, together with a dynamic inversion of the system, in order to optimize the performances of the controller. Obstacle avoiding simulation results will be validated and compared with other nonlinear optimal feedback controllers, from a realistic industrial simulator environment for vehicle dynamics

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:15 ,  Issue: 3 )

Date of Publication:

May 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.