By Topic

Direct-Write Vapor Sensors on FR4 Plastic Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Valery R. Marinov ; Center for Nanoscale Sci. & Eng., North Dakota State Univ., Fargo, ND ; Yuriy A. Atanasov ; Adeyl Khan ; Dustin Vaselaar
more authors

Functioning chemiresistor vapor sensing devices on plastic substrates were prepared using low-temperature direct-Xwrite techniques. Interdigitated Ag electrodes were first deposited onto printed circuit boards using a mesoscale maskless materials deposition system (M3D). These Ag lines were 20-50 mum wide and 8-10 mum thick with good adhesion to the substrate and electrical conductivity of 4-12 muOmegamiddotcm. Deposition of chemoselective polymer/C black composite transducer layers on such lines gave sensors that responded to nerve gas stimulant (dimethylmethyl phosphonate) thereby demonstrating the efficacy of direct write for this application. A new approach to localized direct-write deposition, termed Enhanced M3D, allows the formation of sharply defined line edges and enables printing of conductors that operate at radio frequency with low signal loss. The direct-write approaches described here are amenable to future deposition on more interesting substrates and development of more sensitive transducers, orthogonal sensor arrays and an integrated power source/communication platform that might constitute the basis for radio-frequency identification (RFID) sensor tags

Published in:

IEEE Sensors Journal  (Volume:7 ,  Issue: 6 )