Cart (Loading....) | Create Account
Close category search window
 

Low-Power High-Throughput BCH Error Correction VLSI Design for Multi-Level Cell NAND Flash Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Liu ; Sch. of Electr. Eng., Seoul Nat. Univ. ; Junrye Rho ; Wonyong Sung

As the reliability is a critical issue for new generation multi-level cell (MLC) flash memories, there is growing call for fast and compact error correction code (ECC) circuit with minimum impact on memory access time and chip area. This paper presents a high-throughput and low-power ECC scheme for MLC NAND flash memories. The BCH encoder and decoder architecture features byte-wise processing and a low complexity key equation solver using a simplified Berlekamp-Massey algorithm. Resource sharing and power reduction techniques are also applied. Synthesized using 0.25-mum CMOS technology in a supply voltage of 2.5 V, the proposed BCH (4148,4096) encoder/decoder achieves byte-wise processing, and it needs an estimated cell area of 0.2 mm2, and an average power of 3.18 mW with 50 MB/s throughput

Published in:

Signal Processing Systems Design and Implementation, 2006. SIPS '06. IEEE Workshop on

Date of Conference:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.