By Topic

Advanced Methods of Multivariate Anomaly Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schaum, A. ; Naval Res. Lab., Washington

The generic problem in anomaly detection is identifying unusual samples present in a large population. Each member of the population is described by a list of characteristics that define a feature vector. One statistical method that accounts for mutual correlations among the components has defined the standard for anomaly detection in communication, radar, and hyperspectral signal processing for several decades. This paper describes an advanced methodology that constructs nonlinear transformations to account for observed data distributions not amenable to a statistical description. The construction relies on a combination of stochastic methods and phenomenological constraints. Examples are taken from hyperspectral target detection.

Published in:

Aerospace Conference, 2007 IEEE

Date of Conference:

3-10 March 2007