By Topic

Mars Science Laboratory Entry Capsule Aerothermodynamics and Thermal Protection System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Karl T. Edquist ; NASA Langley Research Center, Hampton, VA 23681. 757-864-4566, Karl.T.Edquist@nasa.gov ; Brian R. Hollis ; Artem A. Dyakonov ; Bernard Laub
more authors

The mars science laboratory (MSL) spacecraft is being designed to carry a large rover (> 800 kg) to the surface of Mars using a blunt-body entry capsule as the primary decelerator. The spacecraft is being designed for launch in 2009 and arrival at mars in 2010. The combination of large mass and diameter with non-zero angle-of-attack for MSL will result in unprecedented convective heating environments caused by turbulence prior to peak heating. Navier-Stokes computations predict a large turbulent heating augmentation for which there are no supporting flight data1 and little ground data for validation. Consequently, an extensive experimental program has been established specifically for MSL to understand the level of turbulent augmentation expected in flight. The experimental data support the prediction of turbulent transition and have also uncovered phenomena that cannot be replicated with available computational methods. The result is that the flight aeroheating environments predictions must include larger uncertainties than are typically used2 for a mars entry capsule. Finally, the thermal protection system (TPS) being used for MSL has not been flown at the heat flux, pressure, and shear stress combinations expected in flight, so a test program has been established to obtain conditions relevant to flight. This paper summarizes the aerothermodynamic definition analysis and TPS development, focusing on the challenges that are unique to MSL.

Published in:

2007 IEEE Aerospace Conference

Date of Conference:

3-10 March 2007