By Topic

A Mars VTOL Aerobot - Preliminary Design, Dynamics and Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hanbing Song ; AIAA student member, Surrey Space Centre, University of Surrey, Guildford, GU2 7XH, U.K. 0044-1483686027, ; Craig Underwood

In this paper, we propose the use of a novel fixed-wing vertical take-off and landing (VTOL) aerobot. A mission profile to investigate the Isidis Planitia region of Mars is proposed based on the knowledge of the planet's geophysical characteristics, its atmosphere and terrain. The aerobot design is described from the aspects of vehicle selection, its propulsion system, power system, payload, thermal management, structure, mass budget, and control strategy and sensor suite. The aerobot proposed in this paper is believed to be a practical and realistic solution to the problem of investigating the Martian surface. A six-degree-of-freedom flight simulator has been created to support the aerobot design process by providing performance evaluations. The nonlinear dynamics is then linearized to a state-space formulation at a certain trimmed equilibrium point. Basic autopilot modes are developed for the aerobot based on the linearized state-space model. The results of the simulation show the aerobot is stable and controllable.

Published in:

2007 IEEE Aerospace Conference

Date of Conference:

3-10 March 2007