By Topic

Techniques for Classifying Executions of Deployed Software to Support Software Engineering Tasks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Haran, M. ; Dept. of Stat., Pennsylvania State Univ., University Park, PA ; Karr, A. ; Last, M. ; Orso, A.
more authors

There is an increasing interest in techniques that support analysis and measurement of fielded software systems. These techniques typically deploy numerous instrumented instances of a software system, collect execution data when the instances run in the field, and analyze the remotely collected data to better understand the system's in-the-field behavior. One common need for these techniques is the ability to distinguish execution outcomes (e.g., to collect only data corresponding to some behavior or to determine how often and under which condition a specific behavior occurs). Most current approaches, however, do not perform any kind of classification of remote executions and either focus on easily observable behaviors (e.g., crashes) or assume that outcomes' classifications are externally provided (e.g., by the users). To address the limitations of existing approaches, we have developed three techniques for automatically classifying execution data as belonging to one of several classes. In this paper, we introduce our techniques and apply them to the binary classification of passing and failing behaviors. Our three techniques impose different overheads on program instances and, thus, each is appropriate for different application scenarios. We performed several empirical studies to evaluate and refine our techniques and to investigate the trade-offs among them. Our results show that 1) the first technique can build very accurate models, but requires a complete set of execution data; 2) the second technique produces slightly less accurate models, but needs only a small fraction of the total execution data; and 3) the third technique allows for even further cost reductions by building the models incrementally, but requires some sequential ordering of the software instances' instrumentation.

Published in:

Software Engineering, IEEE Transactions on  (Volume:33 ,  Issue: 5 )