Cart (Loading....) | Create Account
Close category search window
 

Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sun, Y. ; Interdisciplinary Center for Biotechnology Res., Florida Univ., Gainesville, FL

RELIEF is considered one of the most successful algorithms for assessing the quality of features. In this paper, we propose a set of new feature weighting algorithms that perform significantly better than RELIEF, without introducing a large increase in computational complexity. Our work starts from a mathematical interpretation of the seemingly heuristic RELIEF algorithm as an online method solving a convex optimization problem with a margin-based objective function. This interpretation explains the success of RELIEF in real application and enables us to identify and address its following weaknesses. RELIEF makes an implicit assumption that the nearest neighbors found in the original feature space are the ones in the weighted space and RELIEF lacks a mechanism to deal with outlier data. We propose an iterative RELIEF (I-RELIEF) algorithm to alleviate the deficiencies of RELIEF by exploring the framework of the expectation-maximization algorithm. We extend I-RELIEF to multiclass settings by using a new multiclass margin definition. To reduce computational costs, an online learning algorithm is also developed. Convergence analysis of the proposed algorithms is presented. The results of large-scale experiments on the UCI and microarray data sets are reported, which demonstrate the effectiveness of the proposed algorithms, and verify the presented theoretical results

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 6 )

Date of Publication:

June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.