By Topic

Curve/Surface Representation and Evolution Using Vector Level Sets with Application to the Shape-Based Segmentation Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hossam E Abd El Munim ; Dept. of Electr. & Comput. Eng., Louisville Univ., KY ; Farag, A.A.

In this paper, we revisit the implicit front representation and evolution using the vector level set function (VLSF) proposed in (H. E. Abd El Munim, et al., Oct. 2005). Unlike conventional scalar level sets, this function is designed to have a vector form. The distance from any point to the nearest point on the front has components (projections) in the coordinate directions included in the vector function. This kind of representation is used to evolve closed planar curves and 3D surfaces as well. Maintaining the VLSF property as the distance projections through evolution will be considered together with a detailed derivation of the vector partial differential equation (PDE) for such evolution. A shape-based segmentation framework will be demonstrated as an application of the given implicit representation. The proposed level set function system will be used to represent shapes to give a dissimilarity measure in a variational object registration process. This kind of formulation permits us to better control the process of shape registration, which is an important part in the shape-based segmentation framework. The method depends on a set of training shapes used to build a parametric shape model. The color is taken into consideration besides the shape prior information. The shape model is fitted to the image volume by registration through an energy minimization problem. The approach overcomes the conventional methods problems like point correspondences and weighing coefficients tuning of the evolution (PDEs). It is also suitable for multidimensional data and computationally efficient. Results in 2D and 3D of real and synthetic data will demonstrate the efficiency of the framework

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 6 )