Cart (Loading....) | Create Account
Close category search window
 

Randomized Protocols for Duplicate Elimination in Peer-to-Peer Storage Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Distributed peer-to-peer systems rely on voluntary participation of peers to effectively manage a storage pool. In such systems, data is generally replicated for performance and availability. If the storage associated with replication is not monitored and provisioned, the underlying benefits may not be realized. Resource constraints, performance scalability, and availability present diverse considerations. Availability and performance scalability, in terms of response time, are improved by aggressive replication, whereas resource constraints limit total storage in the network. Identification and elimination of redundant data pose fundamental problems for such systems. In this paper, we present a novel and efficient solution that addresses availability and scalability with respect to management of redundant data. Specifically, we address the problem of duplicate elimination in the context of systems connected over an unstructured peer-to-peer network in which there is no a priori binding between an object and its location. We propose two randomized protocols to solve this problem in a scalable and decentralized fashion that does not compromise the availability requirements of the application. Performance results using both large-scale simulations and a prototype built on PlanetLab demonstrate that our protocols provide high probabilistic guarantees while incurring minimal administrative overheads.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:18 ,  Issue: 5 )

Date of Publication:

May 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.