By Topic

A Junction Temperature Reduction Technique for a Microprocessor Considering Temperature Coupled Leakage Power

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jaewook Yoo ; Interconnect Product & Technol., Samsung Electron., Co. Ltd., Yongin ; Kiwon Choi ; Sayoon Kang

Leakage power is emerging as a key challenge in IC design. Since leakage power has super-linear dependency on operating temperature, it becomes imperative to consider the thermal effects while optimizing leakage power. In this paper, an inter-simulation technique which accounts for leakage power and temperature variations is present. Integrating leakage model and coupled thermal-leakage simulations, the converged temperature and power distributions are achieved. In order to flatten the on chip temperature gradient, the revised floorplan design of a microprocessor is proposed. The on-chip temperature distributions are verified with measurement results using an infrared thermography method. The analysis results show that the realistic on-chip temperature distribution is a key for a precise estimation of leakage power. In addition, an important design implication is that the leakage power optimization problem has to be considered as a synthetic task considering logic organization, circuit parameters and chip floor plan.

Published in:

Semiconductor Thermal Measurement and Management Symposium, 2007. SEMI-THERM 2007. Twenty Third Annual IEEE

Date of Conference:

18-22 March 2007